Проведём высоту из большего угла параллелограмма 1)Т.к. меньший угол равен 30° и из большего угла проведена высота то по св - ву прямоугольная треугольника получаем что высота равна 15 см. S=a×huge S= 52×15=780см 2) Т.к дерево и человек стоят перпендекулярно дороге и угол падения тени дерево и человека равно то треугольники подобны (большой треугольник от дерева до тени человека, маленький от чельвека до своего тени). Т.к. треугольники подобны то составиможно пропорции Дерево/человек= тень дерева+ тень человека/тень человека Дерево=5×1,75=8,75м
1) △BAO, △BCO равнобедренные (AE, EC являются одновременно медианами и высотами) => BA=OA, BC=OC OA=OB=OC (радиусы окружности) OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60) ∠ABC=∠ABO+∠OBC=120 ∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180) ∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC AH=AC/2 (в равнобедренном треугольнике высота является медианой) AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис. Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины. BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4 r= OH = BH*4/9 =4
1)Т.к. меньший угол равен 30° и из большего угла проведена высота то по св - ву прямоугольная треугольника получаем что высота равна 15 см.
S=a×huge
S= 52×15=780см
2) Т.к дерево и человек стоят перпендекулярно дороге и угол падения тени дерево и человека равно то треугольники подобны (большой треугольник от дерева до тени человека, маленький от чельвека до своего тени). Т.к. треугольники подобны то составиможно пропорции
Дерево/человек= тень дерева+ тень человека/тень человека
Дерево=5×1,75=8,75м
OA=OB=OC (радиусы окружности)
OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60)
∠ABC=∠ABO+∠OBC=120
∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180)
∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC
AH=AC/2 (в равнобедренном треугольнике высота является медианой)
AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис.
Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины.
BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4
r= OH = BH*4/9 =4
R= AB*BC*AC/2*S = AB*BC/2*BH = 15^2/2*9 =12,5
Проверка:
r*R= AB*BC*AC/2(AB+BC+AC)
15*15*24/2(15+15+24) = 50 = 4*12,5