Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Проведем высоту BH S=(AD+BC)* 1/2*ВH. Рассмотрим треугольник АВН. угол А=60 АВ=16, угол ВНА=90. Значит треугольник АВН-прямоугольный угол А+угол АВН=90 градусов( свойство острых углов прямоугльного треугольника) угол АВН=90-60=30 градусов АН=1/2АВ(Свойство катета лежавшего напротив угла в 30 градусов) АН=8 Проведем высоту СN (Там все точно такое же как и в первом треугольнике ) DN=8 Найдем НN HN=AD-(BH+HN) HN=4 Рассмотрим прямоугольник HBCN HN=BC=4 Найдем высоту BH AB=BH+AH каждая сторона в квадрате(теорема Пифагора) BH=AB-AH( каждая сторона в квадрате BH=256-64=192 BH= корень из92=8кореньиз 3 S=(20+4)*1/28* 8 корень из 3=96кореньиз 3
S=(AD+BC)* 1/2*ВH.
Рассмотрим треугольник АВН.
угол А=60 АВ=16, угол ВНА=90. Значит треугольник АВН-прямоугольный
угол А+угол АВН=90 градусов( свойство острых углов прямоугльного треугольника)
угол АВН=90-60=30 градусов
АН=1/2АВ(Свойство катета лежавшего напротив угла в 30 градусов)
АН=8
Проведем высоту СN
(Там все точно такое же как и в первом треугольнике )
DN=8
Найдем НN
HN=AD-(BH+HN)
HN=4
Рассмотрим прямоугольник HBCN
HN=BC=4
Найдем высоту BH
AB=BH+AH каждая сторона в квадрате(теорема Пифагора)
BH=AB-AH( каждая сторона в квадрате
BH=256-64=192
BH= корень из92=8кореньиз 3
S=(20+4)*1/28* 8 корень из 3=96кореньиз 3