Проекция это когда опускаешь перпендикуляр из точки конца отрезка ты проводишь высоту из вершины В к основанию АС и находишь отрезочки на которые делится основание этой высотой а еще нужно заметить что треугольник АВС прямоугольный и можно найти АС АС в квадрате = 20*20+15*15 ас в квадрате=625 Ас =25 вот есть у тебя треугольник там есть подобные треугольники маленький треугольник подобен большому я возьму что точка где будет заканчиваться проекция Н вот получается что треугольник АВН подобен АВС и можно использовать отношение сходственных сторон 20\25=х\15 х это АН потом из 25 вычитаешь полученное и все)
Периметр треугольника равен 24. Докажите что расстояние от любой точки плоскости, до хотя бы одной из его вершин больше 4
Решение может быть основано на одном из основных свойств треугольника: Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b – c; и так же - для каждой стороны любого треугольника. Сумма двух сторон данного треугольника периметра 24 не может быть меньше 12,11111, иначе треугольник не получится. Поэтому расстояние от любой точки плоскости - независимо от того, вне или внутри треугольника точка- до хотя бы одной из вершин этого треугольника будет больше половины длины большей его стороны, т.е. больше 4.
Другой доказательства. Рассмотрим случаи, когда эта точка равноудалена от каждой из вершин, т.е. находится в центре описанной окружности. Тогда при ее смещении расстояние от нее до хотя бы одной из вершин треугольника будет больше радиуса описанной окружности. У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы. Случай1 - равносторонний треугольник АВС. Р=24, а=24:3=8. Возьмем для рассмотрения точку Е - центр описанной окружности вокруг треугольника АВС. Расстояние от нее до каждой из вершин является одинаковым. Высота ( медиана, биссектриса ) равна h=a*sin(60) R=ВЕ=СЕ=СА=h:3*2=2*{(8√3):2}:3=4,6188, т.е. больше 4. Естественно предположить, что любая другая точка, расположенная внутри АВС, (М, Р, К) будет хотя бы от одной из вершин расположена на расстоянии большем, чем R. Очевидно, что в случае, когда данная точка находится вне плоскости треугольника, она тем более будет находиться на расстоянии, большем, чем радиус описанной окружности, т.е. большем, чем 4.
Случай 2 - произвольный треугольник АВС. Пусть длина его сторон 9, 8 и 7. Центр описанной вокру него окружности находится в точке пересечения срединных перпендикуляров. R=abc:4S Площадь данного треугольника, найденная по формуле Герона, равна приблизительно 26, 833 R=≈4,695, и это больше, чем 4. Изменение места расположения точки Е приводит к тому, что расстояние до какой-либо из вершин будет больше R, и, естественно, больше 4. Для прямоугольного треугольника равное расстояние до вершин будет R=5 Соответственно, если точка Е будет расположена в другом месте плоскости, то и расстояние от нее до хотя бы одной из вершин будет больше. ответ: Расстояние от любой точки плоскости до хотя бы одной из его вершин треугольника с периметром 24 больше 4, что и требовалось доказать. [email protected]
ты проводишь высоту из вершины В к основанию АС и находишь отрезочки на которые делится основание этой высотой
а еще нужно заметить что треугольник АВС прямоугольный
и можно найти АС
АС в квадрате = 20*20+15*15
ас в квадрате=625
Ас =25
вот есть у тебя треугольник
там есть подобные треугольники
маленький треугольник подобен большому
я возьму что точка где будет заканчиваться проекция Н
вот получается что треугольник АВН подобен АВС
и можно использовать отношение сходственных сторон 20\25=х\15
х это АН
потом из 25 вычитаешь полученное и все)
Решение может быть основано на одном из основных свойств треугольника:
Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b – c; и так же - для каждой стороны любого треугольника.
Сумма двух сторон данного треугольника периметра 24 не может быть меньше 12,11111, иначе треугольник не получится.
Поэтому расстояние от любой точки плоскости - независимо от того, вне или внутри треугольника точка- до хотя бы одной из вершин этого треугольника будет больше половины длины большей его стороны, т.е. больше 4.
Другой доказательства.
Рассмотрим случаи, когда эта точка равноудалена от каждой из вершин, т.е. находится в центре описанной окружности.
Тогда при ее смещении расстояние от нее до хотя бы одной из вершин треугольника будет больше радиуса описанной окружности.
У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
Случай1 - равносторонний треугольник АВС.
Р=24,
а=24:3=8.
Возьмем для рассмотрения точку Е - центр описанной окружности вокруг треугольника АВС.
Расстояние от нее до каждой из вершин является одинаковым.
Высота ( медиана, биссектриса ) равна
h=a*sin(60)
R=ВЕ=СЕ=СА=h:3*2=2*{(8√3):2}:3=4,6188,
т.е. больше 4.
Естественно предположить, что любая другая точка, расположенная внутри АВС, (М, Р, К) будет хотя бы от одной из вершин расположена на расстоянии большем, чем R.
Очевидно, что в случае, когда данная точка находится вне плоскости треугольника, она тем более будет находиться на расстоянии, большем, чем радиус описанной окружности, т.е. большем, чем 4.
Случай 2 - произвольный треугольник АВС.
Пусть длина его сторон 9, 8 и 7. Центр описанной вокру него окружности находится в точке пересечения срединных перпендикуляров.
R=abc:4S
Площадь данного треугольника, найденная по формуле Герона, равна приблизительно 26, 833
R=≈4,695, и это больше, чем 4.
Изменение места расположения точки Е приводит к тому, что расстояние до какой-либо из вершин будет больше R, и, естественно, больше 4.
Для прямоугольного треугольника равное расстояние до вершин будет R=5
Соответственно, если точка Е будет расположена в другом месте плоскости, то и расстояние от нее до хотя бы одной из вершин будет больше.
ответ:
Расстояние от любой точки плоскости до хотя бы одной из его вершин треугольника с периметром 24 больше 4, что и требовалось доказать.
[email protected]