Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}. Модуль или длина вектора: |a|=√(x²+y²). cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2. Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2. Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2. Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2. Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2. Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его стороны равны, то это или ромб, или квадрат. Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно). cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)]. Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2. Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.
Модуль или длина вектора: |a|=√(x²+y²).
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае:
Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2.
Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2.
Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его
стороны равны, то это или ромб, или квадрат.
Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно).
cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)].
Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2.
Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.
По одной из формул: площадь треугольника равна половине произведения длин его сторон на синус угла между ними.
При пересечении диагоналей вертикальные углы равны.
Пусть ∠АОВ=∠DOC=α Тогда смежные им ∠DOA=∠BOC=180°- α. sinα=sin(180°- α)
Примем АО=а, ВО=b, СО=с, DO=d. Тогда:
S(AOB)=a•b•sinα/2
Ѕ(DOC)=d•c•sinα/2
S(AOB)•Ѕ(DOC)=a•b•c•d•sin²α/4
S(AOD)=a•d•sinα/2
S(BOC)=b•c•sinα /2
S(AOD)•S(BOC)=a•d•b•c•sin²α/4
a•b•c•d•sin²α/4 =a•d•b•c•sin²α/4 ⇒
S(AOB)•Ѕ(DOC)= S(AOD)•S(BOC), что и требовалось доказать.