Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)