1-вариант.
Задание 1
ответ А. Так как соответственные углы равны.
Задание 2
∠С- 14х+4
∠В- 12х+6
∠ АDC-140 градусов
(14х+4)+(12х+6)=140
14х+4+12х+6=140
26х+10=140
26х=140-10
26х=130
х=5
С=14*5-4=66
ответ: ∠С=66 градусов
Задание 3
∠А-30
∠С-100
СС1-биссектриса-7 см
ВС1-?
∠В=180-(100+75)=5
Так как биссектриса делит угол пополам то ВСС1- равнобедренный => ВС1=СС1= 7см
ответ: ВК1= 7см
Задание 4
САД=30 =>ДАВ=30 т.к АД биссектриса, делит угол на равные части.
∠А=30+30=60
∠В=180-∠А+∠С= 180-(60+50)=70
∠В=70
ответ: ∠В=70
Вроде так.
Объяснение:
Даны координаты точек: М(7;2;0), N(7;0;2), K(0;7;2).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0.
Подставим данные и упростим выражение:
x - 7 y - 2 z - 0
7 - 7 0 - 2 2 - 0
0 - 7 7 - 2 2 - 0 = 0
0 -2 2
-7 5 2 = 0
(x - 7) (-2·2-2·5) - (y - 2) (0·2-2·(-7)) + (z - 0) (0·5-(-2)·(-7)) = 0,
(-14) (x - 7) + (-14) (y - 2) + (-14) (z - 0) = 0,
- 14x - 14y - 14z + 126 = 0 или, сократив на -14 получаем:
x + y + z - 9 = 0.
Подставив координаты точки L в уравнение, определяем:
(27/3) - 9 = 0,
0 = 0.
ответ: да ,точка L лежит на плоскости MNK.
1-вариант.
Задание 1
ответ А. Так как соответственные углы равны.
Задание 2
∠С- 14х+4
∠В- 12х+6
∠ АDC-140 градусов
(14х+4)+(12х+6)=140
14х+4+12х+6=140
26х+10=140
26х=140-10
26х=130
х=5
С=14*5-4=66
ответ: ∠С=66 градусов
Задание 3
∠А-30
∠С-100
СС1-биссектриса-7 см
ВС1-?
∠В=180-(100+75)=5
Так как биссектриса делит угол пополам то ВСС1- равнобедренный => ВС1=СС1= 7см
ответ: ВК1= 7см
Задание 4
САД=30 =>ДАВ=30 т.к АД биссектриса, делит угол на равные части.
∠А=30+30=60
∠В=180-∠А+∠С= 180-(60+50)=70
∠В=70
ответ: ∠В=70
Вроде так.
Объяснение:
Даны координаты точек: М(7;2;0), N(7;0;2), K(0;7;2).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0.
Подставим данные и упростим выражение:
x - 7 y - 2 z - 0
7 - 7 0 - 2 2 - 0
0 - 7 7 - 2 2 - 0 = 0
x - 7 y - 2 z - 0
0 -2 2
-7 5 2 = 0
(x - 7) (-2·2-2·5) - (y - 2) (0·2-2·(-7)) + (z - 0) (0·5-(-2)·(-7)) = 0,
(-14) (x - 7) + (-14) (y - 2) + (-14) (z - 0) = 0,
- 14x - 14y - 14z + 126 = 0 или, сократив на -14 получаем:
x + y + z - 9 = 0.
Подставив координаты точки L в уравнение, определяем:
(27/3) - 9 = 0,
0 = 0.
ответ: да ,точка L лежит на плоскости MNK.