В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
qweasdzxcrfvtgbmn
qweasdzxcrfvtgbmn
03.05.2022 12:13 •  Геометрия

Только ответ! за 40 из точки m, лежащей внутри треугольник abc, проведены перпендикуляры md, me, mf на стороны bc, ac, ab соответственно. найдите отношение площади треугольника abc к площади треугольника def, если известно, что bc=a, ac=b и ab=c, md=k, mf=m. в случае, если ответ будет нецелым числом, округлите его до ближайшего целого. a=5, b=4, c=6, k=2, m=1.

Показать ответ
Ответ:
wwwnikitafakh
wwwnikitafakh
03.10.2020 00:24
Это - совершенно тупая задача, но требующая больших усилий. Этакая задачка для "танков". Тут такие задачи редко встречаются, поэтому я решил выложить решение. С точки зрения математической изюминки задача совершенно пустая.
1) пусть S - площадь ABC, S1 - площадь DEF.
2) поскольку у треугольника ABC заданы все три стороны, то его площадь фактически тоже задана - она просто считается по формуле Герона. Чтобы потом не тратить место, я её сразу рассчитаю для треугольника со сторонами 5,4,6.
p = (5 + 4 + 6)/2 = 15/2; p  - 5 = 5/2; p - 4 = 7/2; p - 6 = 3/2;
S^2 = 15*5*7*3/2^4; S = 15√7/4;
3) Из трех отрезков, выходящих из точки M, заданы два. Третий ME = n легко рассчитывается, если заметить, что
S = mc/2 + ka/2 + nc/2;
n = (2S - mc - ka)/b;
Для заданных в условии числовых значений n = 15√7/8 - 4; это приблизительно 0,960783708246107;
4) теперь надо приложить первое и последнее в этой задаче мозговое усилие.
Четырехугольник AFME имеет два прямых угла, поэтому сумма двух других углов ∠FAE + ∠FME = 180°;
это означает, что sin(∠FAE) = sin(∠FME) = sin(A); где A - угол треугольника ABC. Площадь треугольника FME равна mn*sin(∠FME)/2 = mn*sin(A)/2;
С другой стороны, S = bc*sin(A)/2; поэтому площадь треугольника FME находится так
Sfme = S*mn/bc;
точно так же находятся площади треугольников FMD и DME, если результаты сложить, то очевидно получается
S1/S = mn/bc + mk/ac + kn/ab;
5) нужно найти S/S1, округленную до ближайшего целого. Для этого полезно уметь пользоваться Excel :).
Для S1/S получается приближенно 0,202777692001532; обратная величина 4,93150893537365;
то есть в ответе должно стоять 5;
Поскольку n очень близко к 1, этот ответ легко получить и простыми арифметическими подсчетами.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота