(а) Площадь пола команды считаем в см 250х150=37500 см кв.
Считаем площадь одной плитки 30х30=900 см кв
ПЛ пола делим на ПЛ плитки 37500/900=41.666, округляем 42 плитки
(б) 3,2 (м) = 3,2*100 = 320 (см).
2,5 (м) = 2,5*100 = 250 (см).
Площадь прямоугольника равна произведению его смежных сторон.
Так как стена имеет форму прямоугольника, то его площадь равна -
250 (см)*320 (см) = 80000 (см²).
А площадь одной прямоугольной плитки равна -
20 (см)*10 (см) = 200 (см²).
Чтобы найти число плиток, площадь стенки разделим на площадь одной плитки -
80000 (см²) : 200 (см²) = 400 (плиток).
400 плиток.
Прямая призма АВСА₁В₁С₁ вписана в цилиндр. АВ = ВС = 6, ∠АВС = 120°, АА₁ = 10.
Найти площадь боковой поверхности цилиндра.
ответ: 120π
Объяснение:
Если прямая призма вписана в цилиндр, то высота цилиндра равна длине бокового ребра призмы:
Н = АА₁ = 10,
а основания цилиндра описаны около оснований призмы.
ΔАВС равнобедренный, тогда
∠А = ∠С = (180° - 120°)/2 = 30°
Радиус окружности, описанной около треугольника, можно найти по формуле:
R = AB / (2 sin∠C) = 6 / (2 · 1/2) = 6
Площадь боковой поверхности цилиндра:
Sбок.цил. = 2πR · H = 2π · 6 · 10 = 120π кв. ед.
(а) Площадь пола команды считаем в см 250х150=37500 см кв.
Считаем площадь одной плитки 30х30=900 см кв
ПЛ пола делим на ПЛ плитки 37500/900=41.666, округляем 42 плитки
(б) 3,2 (м) = 3,2*100 = 320 (см).
2,5 (м) = 2,5*100 = 250 (см).
Площадь прямоугольника равна произведению его смежных сторон.
Так как стена имеет форму прямоугольника, то его площадь равна -
250 (см)*320 (см) = 80000 (см²).
А площадь одной прямоугольной плитки равна -
20 (см)*10 (см) = 200 (см²).
Чтобы найти число плиток, площадь стенки разделим на площадь одной плитки -
80000 (см²) : 200 (см²) = 400 (плиток).
400 плиток.
Прямая призма АВСА₁В₁С₁ вписана в цилиндр. АВ = ВС = 6, ∠АВС = 120°, АА₁ = 10.
Найти площадь боковой поверхности цилиндра.
ответ: 120π
Объяснение:
Если прямая призма вписана в цилиндр, то высота цилиндра равна длине бокового ребра призмы:
Н = АА₁ = 10,
а основания цилиндра описаны около оснований призмы.
ΔАВС равнобедренный, тогда
∠А = ∠С = (180° - 120°)/2 = 30°
Радиус окружности, описанной около треугольника, можно найти по формуле:
R = AB / (2 sin∠C) = 6 / (2 · 1/2) = 6
Площадь боковой поверхности цилиндра:
Sбок.цил. = 2πR · H = 2π · 6 · 10 = 120π кв. ед.