Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
1. Найти площадь полной поверхности правильной четырехугольной призмы, если сторона основания равна 4, диагональ призмы, равная 10, составляет с плоскостью основания угол в 30 градусов.
Высота призмы, как катет против угла 30 градусов, равна 10/2 = 5. S = 2So + Sбок = 2*4² + 4*4*5 = 32 + 80 = 112 кв.ед.
2. Найти боковое ребро L правильной четырехугольной пирамиды, если ее высота H равна 7, а сторона a основания 8 и площадь полной поверхности, если апофема A равна корень из 65.
L = √(A² + (a/2)²) = √(65 + 16) = √81 = 9.
3. Найти площадь S полной поверхности правильной усеченной треугольной пирамиды, если стороны оснований равны a₂ = 4 и a₁ =1, а боковое ребро L = 2.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Высота призмы, как катет против угла 30 градусов, равна 10/2 = 5.
S = 2So + Sбок = 2*4² + 4*4*5 = 32 + 80 = 112 кв.ед.
2. Найти боковое ребро L правильной четырехугольной пирамиды, если ее высота H равна 7, а сторона a основания 8 и площадь полной поверхности, если апофема A равна корень из 65.
L = √(A² + (a/2)²) = √(65 + 16) = √81 = 9.
3. Найти площадь S полной поверхности правильной усеченной треугольной пирамиды, если стороны оснований равны a₂ = 4 и a₁ =1, а боковое ребро L = 2.
Апофема А = √(L² - ((a₂ - a₁)/2)²) = √(2² - (3/2)²) = √(4 - (9/4)) = √7/2.
Площадь боковой поверхности равна:
Sбок = (1/2)(р₁ + р₂)А = (1/2)*(3+12)*√7/2 = 15√7/4.
Площади оснований равны:
So₁ = 1²√3/4 = √3/4.
So₂ = 4²√3/4 = 16√3/4.
Отсюда S = 15√7/4 + √3/4 + 16√3/4 = (15√7 + 17√3)/4 кв.ед.