Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
α =β =1 ⇒4x +1 =0 ⇔ x = -1/4 .
α = - β =1⇒2y - 3/2 =0 ⇔ y = 3 /2 .
* * * x = -1/4 и y = 3/2 * * *
M₀( -1/4 ; 3 /2) центр пучка прямых
y -y₀ =k(x -x₀) ⇔y -3/2 =k*(x +1/4) .
Любые две прямые : 1) y - 3/2 =k*(x +1/4) и 2) y - 3/2 = (- 1/k)*(x +1/4) .
можно задавать например:
a) k = -2 ⇒ 2x+y -1 =0 и 4x -8y +13 =0 .
b) k = 2 ⇒ 2x -y +2 0 и 4x +8y -11= 0
2. Найдите каноническое уравнение прямой : {x+y -2 = 0 ;y - z +1 =0 .
(x - x₁) / (x₂-x₁) = (y - y₁) / (y₂-y₁) = (z - z₁) / (z₂ - z₁) ;
Выбираем две точки : M₁(1; 1; 2 ) , M₂(2; 0; 1 )
(x - 1) / (2 -1) = (y - 1) / (0 -1) = (z - 2) / (1 - 2) ⇔
(x - 1) / 1 = (y - 1) / (-1) = (z - 2) / ( -1) .
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.