Таблицы не вижу. Признаки равенства треугольников таковы:
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны. 3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны. Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны. 2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны. 3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны. 4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны. 5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны. И т.д.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны.
2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны.
3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны.
4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны.
5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны.
И т.д.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.