с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
ответ:
с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
из δоо1b:
площадь сечения шара
объяснение:
В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.