А) проведем высоту к основанию, она будет являться медианой 1) делит основание на два равных отрезка 2)образует с основанием угол в 90* получится два равных прямоугольных треугольника. рассмотрим один из них- нам известна гипотенуза и катет. Х-высота ( в р/б) и катет(в прямоугольном треугольнике) Гипотенуза=13 Один из катетов равен половине основания 10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б) 13^2=5^2+x^2 x^2=169-25 x^2=144 x=корень из 144 х=12 дм б) s(р/б)=а*h/2 (а - основание) s(р/б)=12*10/2 s(р/б)=12*5 s(р/б)=60 дм^2
1. Меньшая диагональ правильного шестиугольника образует равнобедренный треугольник с углом при вершине - 120°. Основание треугольника - 6√3 (по условию). Проводим высоту из вершины треугольника. Она является биссектрисой и медианой. В образовавшемся треугольнике углы - 60°, 30°, 90°. Против угла 30° лежит катет в два раза меньше гипотенузы. Принимаем за х высоту треугольника и решаем по тю Пифагора: 4х²=х²+(3√3)² 3х²=27 х=3; Гипотенуза - сторона правильного шестиугольника равна 3*2=6. Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности. R=6. L=2πR=12π.
2. Неизвестный угол обозначен на чертеже красным цветом. Находим FH из прямоугольного треугольника BFH. FH=√(5²-3²)=4. В треугольнике ВНО ВН=ОН (углы при ОВ 45° и угол Н 90°) и равны 6/2=3. Тогда, из треугольника FHO FH*cosα=OH, cosα=OH/FH, α=arccosOH/FH=arccos0.6.
проведем высоту к основанию, она будет являться медианой
1) делит основание на два равных отрезка
2)образует с основанием угол в 90*
получится два равных прямоугольных треугольника.
рассмотрим один из них- нам известна гипотенуза и катет.
Х-высота ( в р/б) и катет(в прямоугольном треугольнике)
Гипотенуза=13
Один из катетов равен половине основания
10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б)
13^2=5^2+x^2
x^2=169-25
x^2=144
x=корень из 144
х=12 дм
б)
s(р/б)=а*h/2 (а - основание)
s(р/б)=12*10/2
s(р/б)=12*5
s(р/б)=60 дм^2
В образовавшемся треугольнике углы - 60°, 30°, 90°. Против угла 30° лежит катет в два раза меньше гипотенузы. Принимаем за х высоту треугольника и решаем по тю Пифагора:
4х²=х²+(3√3)²
3х²=27
х=3;
Гипотенуза - сторона правильного шестиугольника равна 3*2=6.
Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.
R=6.
L=2πR=12π.
2. Неизвестный угол обозначен на чертеже красным цветом.
Находим FH из прямоугольного треугольника BFH.
FH=√(5²-3²)=4.
В треугольнике ВНО ВН=ОН (углы при ОВ 45° и угол Н 90°) и равны 6/2=3.
Тогда, из треугольника FHO FH*cosα=OH, cosα=OH/FH, α=arccosOH/FH=arccos0.6.