1. Треугольники DOC и АОВ подобны по первому признаку подобия треугольников: два угла одного треугольника соответственно равны двум углам другого. В нашем случае углы DOC и АОВ равны как вертикальные углы, а углы DCA и САВ равны как накрест лежащие углы при пересечении параллельных прямых DC и АВ секущей АС. 2. Выразим ОС как 15-АО 3. Поскольку треугольники подобны, можно записать: АО / ОС = АВ / DC, АО = ОС*АВ / DC AO = (15-AO)*AB / DC AO = (15-AO)*96 / 24 24AO = (15-AO)*96 24AO = 1440 - 96AO 120AO = 1440 AO = 12 см
37,5 см^2
Объяснение:
Скорее всего, опечатка в условии задания.
Если угол А = 45⁰, то угол В также 45⁰, т.к. треугольник ABK - прямоугольный и сумма всех углов 180⁰.
Так как угол A = углу B, то треугольник - равнобедренный и AK = BK = 5;
Из этого имеем, что BCDK - квадрат со сторонами 5.
S(BCDK) = 5^2 = 25 см^2
Найдем площадь треугольника исходя из того, что он равнобедренный с катетами 5, что будет составлять половину от площади квадрата.
S(ABK) = S(BCDK)/2 = 25/2 = 12,5 см^2
S(ABCD) = 25 + 12,5 = 37,5 см^2
2. Выразим ОС как 15-АО
3. Поскольку треугольники подобны, можно записать:
АО / ОС = АВ / DC,
АО = ОС*АВ / DC
AO = (15-AO)*AB / DC
AO = (15-AO)*96 / 24
24AO = (15-AO)*96
24AO = 1440 - 96AO
120AO = 1440
AO = 12 см