. Доказательство того, что диагональ делит параллелограмм на два равных треугольника: Треугольники будут равны по трём сторонам - диагональ (общий элемент) и параллельные стороны (они равны).
2. Сама задача: 1. ВС=12+7= 19см. ВС=АД=19см. (т.к. противоположные стороны параллелограмма равны) 2. Треугольник АВЕ - равнобедренный с основанием АЕ. (т.к. накрест лежащие углы равны, а биссектриса делит угол на две равные части, то есть все углы, касающиеся биссектрисы, равны) АВ=ВЕ=12см. 3. Периметр параллелограмма: 2х(АВ+ВС)=2х(19+12)=62см.
△BAL, △CAL - равнобедренные треугольники
Рассмотрим случаи:
1) ∠B=∠BAL
1.1) ∠С≠∠CAL, т.к. в противном случае BL=AL=CL, медиана равна половине стороны, следовательно проведена из прямого угла, но ∠BAC=48°.
1.2) ∠CAL=∠ALС
∠ALС=2∠B (внешний угол равен сумме двух внутренних, не смежных с ним)
∠CAL=2∠B
∠BAL+∠CAL=48° <=> 3∠B=48° <=> ∠B=16°, ∠С=180°-∠B-∠BAC=116°
1.3) ∠С=∠ALС
∠ALС=2∠B (внешний угол равен сумме двух внутренних, не смежных с ним)
∠С=2∠B
∠С+∠B=180°-48°=132° <=> 3∠B=132° <=> ∠B=44°, ∠С=88°
2) ∠BAL=∠ALB
2.1) ∠С=∠CAL. Аналогично 1.2
2.2) ∠CAL≠∠ALC. Углы при основаниях равнобедренных треугольников острые, следовательно не могут составлять развенутый угол.
2.3) ∠C≠∠ALC, см. 2.2
3) ∠B=∠ALB
3.1) ∠С=∠CAL. Аналогично 1.3
3.2) ∠CAL≠∠ALC, см. 2.2
3.3) ∠C≠∠ALC, см. 2.2
Треугольники будут равны по трём сторонам - диагональ (общий элемент) и параллельные стороны (они равны).
2. Сама задача:
1. ВС=12+7= 19см.
ВС=АД=19см. (т.к. противоположные стороны параллелограмма равны)
2. Треугольник АВЕ - равнобедренный с основанием АЕ. (т.к. накрест лежащие углы равны, а биссектриса делит угол на две равные части, то есть все углы, касающиеся биссектрисы, равны)
АВ=ВЕ=12см.
3. Периметр параллелограмма:
2х(АВ+ВС)=2х(19+12)=62см.