Трапеція ABCD (AB || CD) така, що коло, описане навколо трикутника ABD, дотикається до прямої BC. Доведіть, що коло, описане навколо трикутника BCD, дотикається до прямої AD.
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;
30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°