АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
АК - биссектриса, тогда <ВАК=<КАС - принимаем за х. Итак, <ВАК=<КАС=х, тогда весь <ВАС=2х, треугольник АВС равнобедренный, АС - основание, значит, <ВАС=<АСВ=2х (угол А и С равны каждый по 2х) По условию треугольник АКВ - равнобедренный с основанием АВ, углы при основании равны, следовательно <ВАК=<АВК, но у нас <ВАК=х, тогда и <АВК=х, то есть угол В=х. Теперь что у нас вышло: в треугольнике АВС <А=2х, <В=х, <С=2х 2х+х+2х=180 градусов 5х=180 х=36 градусов <А=72, <В=36, <С=72 градуса.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Итак, <ВАК=<КАС=х, тогда весь <ВАС=2х, треугольник АВС равнобедренный, АС - основание, значит, <ВАС=<АСВ=2х (угол А и С равны каждый по 2х)
По условию треугольник АКВ - равнобедренный с основанием АВ, углы при основании равны, следовательно <ВАК=<АВК, но у нас <ВАК=х, тогда и <АВК=х, то есть угол В=х.
Теперь что у нас вышло: в треугольнике АВС <А=2х, <В=х, <С=2х
2х+х+2х=180 градусов
5х=180
х=36 градусов
<А=72, <В=36, <С=72 градуса.