Трапеция АВСД вписана в окружность. Боковая сторона и большее основание трапеции равны 30 см и 50 см соответственно. Косинус одного из углов равен (-3/5). Найти радиус описанной окружности, длину окружности, площадь круга, площадь и периметр трапеции.
О- точка пересечения серединных перпендикуляров ( ОМ, ОN и АО)
следовательно, точка пересечения серединных перпендикуляров делит треугольник на шесть равных треугольников
следовательно, треугольник АВС - равносторонний
найдем угол МОА
ОН - является высотой для стороны ВС и делит угол ВОС пополам
следовательно, угол ВОН равен 30 градусов
рассмотрим прямую НА = 180 градусов
следовательно, угол ВОА равен 150 градусов
следовательно, угол МОА равен 150-90=60 градусов ( т.к. угол ОМА = 90)
следовательно, найдем угол МАО = 180-(90+60)=30
рассмотрим треугольник МАО
сторона лежащия на против угла в 30 градусов , равна половине гипотенузы , следовательно сторона МО = 12
по теореме Пифагора найдем сторону АО = 21
рассмотрим треугольник АВН
ВН=12
АН=42
АВ^2 = корень из 42^2+12^2
АВ = 40
АВ=ВС=40
ВС=40
Возможно кто-то напишет простое решение ( возможно это не совсем правильно)
О- точка пересечения серединных перпендикуляров ( ОМ, ОN и АО)
следовательно, точка пересечения серединных перпендикуляров делит треугольник на шесть равных треугольников
следовательно, треугольник АВС - равносторонний
найдем угол МОА
ОН - является высотой для стороны ВС и делит угол ВОС пополам
следовательно, угол ВОН равен 30 градусов
рассмотрим прямую НА = 180 градусов
следовательно, угол ВОА равен 150 градусов
следовательно, угол МОА равен 150-90=60 градусов ( т.к. угол ОМА = 90)
следовательно, найдем угол МАО = 180-(90+60)=30
рассмотрим треугольник МАО
сторона лежащия на против угла в 30 градусов , равна половине гипотенузы , следовательно сторона МО = 12
по теореме Пифагора найдем сторону АО = 21
рассмотрим треугольник АВН
ВН=12
АН=42
АВ^2 = корень из 42^2+12^2
АВ = 40
АВ=ВС=40
ВС=40
Возможно кто-то напишет простое решение ( возможно это не совсем правильно)