трапеция авсd задана координатами вершин а(0; 0), в(-2; -6), с(-5; -6), d(-9; 0). а) найдите координаты середин боковых сторон аd и cd и длину средней линии трапеции. б) составьте уравнение прямой вс.
Имеем угол α = 60°, который образует луч OA с положительной полуосью Ox. Длина отрезка OA = 54. Определи координаты точки A."
Длина отрезка в координатной плоскости определяют по формуле:
Катет, лежащий против угла в 30* равен 1/2 гипотенузы.
ОхА=(1/2)*54=27.
По теореме Пифагора ОуА²=ОА²-ОхА²=54²-27²=2916-729=2187.
ОуА=27√3.
На украинском:
Довжина відрізка в координатній площині визначають за формулою: Катет, що лежить проти кута в 30 * дорівнює 1/2 гіпотенузи. ОхА=(1/2) * 54=27. За теоремою Піфагора ОуА2=ОА2-ОхА2=542-272=2916-729=2187. ОуА=27√3.
AD=DB, т.к. CD-медиана, AD=CD по условию задачи. Следовательно, CD=DB, и треугольник CDB - тоже равнобедренный. Треугольник ACD - равнобедренный с основанием CA, следовательно углы DAC и ACD равны, пусть они будут равны х градусов. Треугольник CDB - равнобедренный с основанием BC, следовательно, углы DBC и DCB равны, пусть они будут равны у градусов. Получаем, что угол А треугольника ABC равен х градусов, угол В треугольника ABC равен y градусов, а угол C треугольника ABC (угол ACB) равен (х+у) градусов, как сумма углов ACD и DCB. Так как сумма всех углов треугольника равна 180 градусов, получаем уравнение
Объяснение:
Имеем угол α = 60°, который образует луч OA с положительной полуосью Ox. Длина отрезка OA = 54. Определи координаты точки A."
Длина отрезка в координатной плоскости определяют по формуле:
Катет, лежащий против угла в 30* равен 1/2 гипотенузы.
ОхА=(1/2)*54=27.
По теореме Пифагора ОуА²=ОА²-ОхА²=54²-27²=2916-729=2187.
ОуА=27√3.
На украинском:
Довжина відрізка в координатній площині визначають за формулою: Катет, що лежить проти кута в 30 * дорівнює 1/2 гіпотенузи. ОхА=(1/2) * 54=27. За теоремою Піфагора ОуА2=ОА2-ОхА2=542-272=2916-729=2187. ОуА=27√3.
x+y+(x+y)=180
2(x+y)=180
x+y=90
Так как х+у равен углу ACB, то задача решена.
ответ: 90 градусов.