Трапеция klmn с основаниями kn и lm вписана окружность , центр которой лежит на основании kn.диогональ km трапеции равна 4 см , а боковая сторона kl равна 3 с . определите длину основания lm. строно
Во-первых, трапеция которая вписана в окружность является равнобедренной, поскольку: 1) сумма противоположных углов четырехугольника равна 180°; 2) сумма односторонних углов трапеции равна 180°; Значит углы при основании равны.
Пусть радиус окружности равен R; При этом TK = TN = R; По теореме синусов: Поскольку LT = KT как радиусы, треугольник LTK - равнобедренный и ∠KLT = ∠LKT = (180°-2α)/2 = 90-α; По теореме синусов: ; С одной стороны , с другой , откуда ; 2R = 5; Опустим перпендикуляры на основание с точек L и M; Тогда
Пусть радиус окружности равен R; При этом TK = TN = R; По теореме синусов:
Поскольку LT = KT как радиусы, треугольник LTK - равнобедренный и ∠KLT = ∠LKT = (180°-2α)/2 = 90-α; По теореме синусов: ; С одной стороны , с другой , откуда ; 2R = 5; Опустим перпендикуляры на основание с точек L и M; Тогда