Трапеция вписана в окружность. ее основания равны 6 дм и 8 дм, а высота равна 1 дм. найдите радиус этой окружности, если известно, что основания трапеции находятся по одну сторону от центра.
Окружность можно описать только около равнобокой трапеции))) тогда высота отрезает от большего основания отрезок, равный (8-6)/2 = 1 дм т.е. высота образует равнобедренный прямоугольный треугольник, острые углы в нем по 45 градусов ⇒ острый угол трапеции (при большем основании) = 45 и он является вписанным углом для этой окружности))) если рассмотреть центральный угол, опирающийся на ту же дугу (что и вписанный угол в 45 градусов), то получим прямоугольный равнобедренный треугольник с катетами=радиусами и гипотенузой=диагональю трапеции))) из прямоугольного треугольника с катетом=высотой трапеции найдем диагональ трапеции: √(1² + 7²) = √50 и это гипотенуза для равнобедренного прямоугольного треугольника... и вновь по т.Пифагора r² + r² = 50 r² = 25 r = 5
тогда высота отрезает от большего основания отрезок, равный (8-6)/2 = 1 дм
т.е. высота образует равнобедренный прямоугольный треугольник,
острые углы в нем по 45 градусов
⇒ острый угол трапеции (при большем основании) = 45 и он является вписанным углом для этой окружности)))
если рассмотреть центральный угол, опирающийся на ту же дугу (что и вписанный угол в 45 градусов), то получим прямоугольный равнобедренный треугольник
с катетами=радиусами и гипотенузой=диагональю трапеции)))
из прямоугольного треугольника с катетом=высотой трапеции
найдем диагональ трапеции: √(1² + 7²) = √50
и это гипотенуза для равнобедренного прямоугольного треугольника...
и вновь по т.Пифагора
r² + r² = 50
r² = 25
r = 5