Трасса для велосипедиста имеет форму треугольника, два угла которого равны 65° и 80°. Меньшую сторону этого треугольника велосипедист проезжает за 1 час. За сколько часов он проедет всю трассу? ответ округлите до десятых.
Диагонали ромба делят ромб на четыре равных прямоугольных треугольника. Точка пересечения диагоналей делит диагонали пополам. Следовательно, 14 : 2 = 7 см - это половина второй диагонали. Найдем половину первой диагонали с теоремы Пифагора: с² = а² + b², где с - гипотенуза = сторона ромба = 25 см, а и b - катеты = половины диагоналей ромба. Пусть а = 7 см, найдем b.
Основание треугольника, средняя линия, половины боковых сторон, прилегающие к основанию (не к вершине) образуют равнобокую трапецию суммы длин противоположных сторон трапеции равны если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2 значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника можно еще и угол у основания найти cos(alpha)=(b/2)/a=2/3
14 : 2 = 7 см - это половина второй диагонали.
Найдем половину первой диагонали с теоремы Пифагора:
с² = а² + b², где с - гипотенуза = сторона ромба = 25 см,
а и b - катеты = половины диагоналей ромба. Пусть а = 7 см, найдем b.
см - половина второй диагонали
24 * 2 = 48 см - вторая диагональ, т.е. d₂
см² - площадь ромба
----------------------------------------------------------------------------------------------------
суммы длин противоположных сторон трапеции равны
если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2
значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника
можно еще и угол у основания найти
cos(alpha)=(b/2)/a=2/3