Тре 3. Ступень решения. По условию,
LA = AK = KB = BN=NC=CL и ZA = ZB =
= 2C = 60°. Тогда стороны AL, AK и угол А
треугольника LAK равны сторонам BK, BN и углу
В треугольника KBN, а также сторонам CN, CL и
углу Стреугольника NCL соответственно.
Значит, ДLAK=ДКBN=NCL и третьи стороны
этих треугольников также равны: KL=KN=NL.
Итак, ДKNL - равносторонний
Духовные оды Ломоносова по праву признаются наиболее совершенными в художественном отношении поэтическими произведениями писателя. Медная крепость их стиля удивительно гармонирует с грандиозностью рисуемых образов. В дальнейшем не раз русская литература вновь и вновь обращалась к духовным проблемам, создавая высочайшие художественные творения, которые принесли ей мировую славу. В конце XVIII века дело Ломоносова продолжил Державин, а затем в поэзии XIX века натурфилософская поэзия Тютчева наследует традиции ломоносовских духовных од, особенно в создании картин ночного пейзажа. Конечно, классицизм с его строгим делением на стили и жанры безвозвратно ушел в оды, столь популярные среди писателей этого литературного направления, сменились другими стихотворными жанрами. Но сам накал духовного искания, выраженный в возвышенных художественных образах, связанных с библейской первоосновой, не мог исчерпать себя. В русской литературе он отразился в той ее пророческой ветви, которая дала нам незабываемых «Пророков» Пушкина и Лермонтова, навсегда связавших воедино в русской литературе имя Поэта с высокой миссией Пророка.
Объяснение:
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение: