1). «Две прямые не пересекаются, если соответственные углы равны»? Верно
Если соответственные углы равны, прямые параллельны.
2). « Существует треугольник, один из углов которого равен разности двух других»? Верно
Это прямоугольный треугольник; угол А=90 градусов, угол С=А-В=90-В
3). «Если сторона и 2 угла одного треугольника равны стороне и 2-м углам другого треугольника, то треугольники равны»? неверно, такие треугольники подобны;
Если сторона и 2 прилегающих к ней угла одного треугольника равны стороне и
2-м прилегающим к ней углам другого треугольника, то треугольники равны
4). «В прямоугольном треугольнике сумма острых углов не меньше 90 градусов»? Верно
она равна 90
5). «Треугольник с двумя различными острыми внешними углами не существует»? Верно,
поскольку острый внешний угол означает, что смежный с ним угол треугольника
будет тупым, а у треугольника может быть только один тупой угол.
6). «В треугольнике РМЕ , ,сторона РЕ- наименьшая». что-то пропущено в условии вопроса;
если, например, угол М наименьший, то и сторона РЕ наименьшая, поскольку она
лежит напротив наименьшего угла.
В заданиях 7-9 поясните ответ.
7). В равнобедренном треугольнике один из углов равен 800 .Чему равны остальные углы?
сумма углов треуг 180. В равнобедренном треуг два одинаковых угла,
если они по 80, то третий равен 180-80-80=20; если же это угол при вершине,
то углы при основании равны (180-80)/2=50 градусов
8). В треугольнике одна из сторон равна 8 см, другая – 10 см. Какие целочисленные значения может принимать длина третьей стороны? сумма длин сторон треугольника всегда больше
длины третьей стороны, то есть третья сторона меньше 8+10=18,
и она может принимать любое целое значение, от 1 см по 17 см
9). В прямоугольном треугольнике наибольшая сторона МТ=39, МК=19,5. Чему равен
вопрос не сформулирован
2 часть
1). Внутри равностороннего треугольника АВС отмечена точка К, такая, что углы ВАК и ВСК равны 150. Найдите АКС. ( ) В условии что-то напутано, не могут ВАК и ВСК равнятья 150 градусов
2). Длины двух сторон равнобедренного треугольника равны соответственно 3 см и 1 см. Определите длину третьей стороны этого треугольника. ( ) В равнобедр треуг две одинаковых стороны. Если это стороны по 3 см, то такой треугольник существует, выполняется условие, что сумма двух сторон треуг больше его третьей стороны. Если бы 2 одинаковые стороны были бы по 1 см, то это условие не выполнится, 1+1<3, значит, такого треуг не существует. ответ: третья сторона длиной 3 см
3). В равнобедренном треугольнике с боковой стороной, равной 14 см и углом 1500 найдите высоту, проведенную к боковой стороне. ( )
4). Докажите, что любая сторона треугольника меньше суммы двух других сторон. ( )
не знаю, как у вас в учебнике, можно просто нарисовать
длинную сторону и "положить" на нее с каждого края отрезки, сумма которых равна
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
Вариант 2.
1). «Две прямые не пересекаются, если соответственные углы равны»? Верно
Если соответственные углы равны, прямые параллельны.
2). « Существует треугольник, один из углов которого равен разности двух других»? Верно
Это прямоугольный треугольник; угол А=90 градусов, угол С=А-В=90-В
3). «Если сторона и 2 угла одного треугольника равны стороне и 2-м углам другого треугольника, то треугольники равны»? неверно, такие треугольники подобны;
Если сторона и 2 прилегающих к ней угла одного треугольника равны стороне и
2-м прилегающим к ней углам другого треугольника, то треугольники равны
4). «В прямоугольном треугольнике сумма острых углов не меньше 90 градусов»? Верно
она равна 90
5). «Треугольник с двумя различными острыми внешними углами не существует»? Верно,
поскольку острый внешний угол означает, что смежный с ним угол треугольника
будет тупым, а у треугольника может быть только один тупой угол.
6). «В треугольнике РМЕ , ,сторона РЕ- наименьшая». что-то пропущено в условии вопроса;
если, например, угол М наименьший, то и сторона РЕ наименьшая, поскольку она
лежит напротив наименьшего угла.
В заданиях 7-9 поясните ответ.
7). В равнобедренном треугольнике один из углов равен 800 .Чему равны остальные углы?
сумма углов треуг 180. В равнобедренном треуг два одинаковых угла,
если они по 80, то третий равен 180-80-80=20; если же это угол при вершине,
то углы при основании равны (180-80)/2=50 градусов
8). В треугольнике одна из сторон равна 8 см, другая – 10 см. Какие целочисленные значения может принимать длина третьей стороны? сумма длин сторон треугольника всегда больше
длины третьей стороны, то есть третья сторона меньше 8+10=18,
и она может принимать любое целое значение, от 1 см по 17 см
9). В прямоугольном треугольнике наибольшая сторона МТ=39, МК=19,5. Чему равен
вопрос не сформулирован
2 часть
1). Внутри равностороннего треугольника АВС отмечена точка К, такая, что углы ВАК и ВСК равны 150. Найдите АКС. ( ) В условии что-то напутано, не могут ВАК и ВСК равнятья 150 градусов
2). Длины двух сторон равнобедренного треугольника равны соответственно 3 см и 1 см. Определите длину третьей стороны этого треугольника. ( ) В равнобедр треуг две одинаковых стороны. Если это стороны по 3 см, то такой треугольник существует, выполняется условие, что сумма двух сторон треуг больше его третьей стороны. Если бы 2 одинаковые стороны были бы по 1 см, то это условие не выполнится, 1+1<3, значит, такого треуг не существует. ответ: третья сторона длиной 3 см
3). В равнобедренном треугольнике с боковой стороной, равной 14 см и углом 1500 найдите высоту, проведенную к боковой стороне. ( )
4). Докажите, что любая сторона треугольника меньше суммы двух других сторон. ( )
не знаю, как у вас в учебнике, можно просто нарисовать
длинную сторону и "положить" на нее с каждого края отрезки, сумма которых равна
этой стороне или меньше ее, сразу станет понятно.
Объяснение: