А). Рассмотрим треугольники ВМР и ВКР. Они равны по двум сторонам и углу между ними: - ВМ=ВК по условию; - ВР - общая сторона; - углы МВР и КВР равны, т.к. высота ВН равнобедренного треугольника АВС, проведенная к его основанию АС является также и биссектрисой. В равных треугольниках ВМР и ВКР равны соответственные углы ВМР и ВКР.
б). Рассмотрим треугольник МРК. Здесь РМ=РК как соответственные стороны равных треугольников ВМР и ВКР. Значит МРК - равнобедренный треугольник, следовательно, углы КМР и МКР при его основании МК равны.
Рассмотрим треугольник АМВ. Он равнобедренный по условию (ВМ=АМ). Значит, углы при его основании АВ равны. <MBA=<MAB. Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов). Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB. Но <MBA=<MAB как показано выше, значит <MBC=<MAC. Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними: - ВС=АС, т.к. АВС - равносторонний треугольник; - ВМ=АМ по условию; - соответственные углы МВС и МАС равны как показано выше. В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.
- ВМ=ВК по условию;
- ВР - общая сторона;
- углы МВР и КВР равны, т.к. высота ВН равнобедренного треугольника АВС, проведенная к его основанию АС является также и биссектрисой.
В равных треугольниках ВМР и ВКР равны соответственные углы ВМР и ВКР.
б). Рассмотрим треугольник МРК. Здесь РМ=РК как соответственные стороны равных треугольников ВМР и ВКР. Значит МРК - равнобедренный треугольник, следовательно, углы КМР и МКР при его основании МК равны.
<MBA=<MAB.
Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов).
Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB.
Но <MBA=<MAB как показано выше, значит
<MBC=<MAC.
Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними:
- ВС=АС, т.к. АВС - равносторонний треугольник;
- ВМ=АМ по условию;
- соответственные углы МВС и МАС равны как показано выше.
В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.