Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.