Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
6)Узнаем периметр и площадь меньшего треугольника: p=3*а3=18√3
s=(a²√3)/4=(36*3√3)/4=27√3 кв. ед.
для маленького треугольника данная окружность описанная, поэтому ее радиус будет R=(a3√3)/3=(6√3*√3)/3=6
Для большего треугольника это окружность вписанная, поэтому R=(A√3)/6 => A=6R/√3=6*6/√3=36/√3=12√3
P=3A=12√3*3=36√3
S=(a²√3)/4=(144*3√3)/4=108√3 кв.ед.
9)p=4* 5√3=20√3
s=a²=(5√3)²=25*3=75 кв.ед
Так как у описанной вокруг меньшего квадрата окружности такой же радиус, что и у вписанной в больший кавдрат (ведь это одна и та же окружность), то можем их приравнять
R=(a√2)/2
r=A/2
(a√2)/2=A/2
A=2*(a√2)/2=a√2=5√3*√2=5√6
P=4A=4*5√6=20√6
S=A²=(5√6)²=25*6=150 кв.ед.
12) Для шестиугольника данная окружность описанная, а для квадрата--вписанная. Приравняем формулы для радиуса этой окружности
Четвертая сторона равна обоим диагоналям, AD = AC = BD.
Вот я примерно нарисовал этот 4-угольник.
Треугольник ABC равнобедренный с углами y (гамма).
Треугольник BCD равнобедренный с углами b (бета).
Треугольник ABD равнобедренный с углами a+y (a - альфа).
Треугольник ACD равнобедренный с углами a+b.
Получаем систему
{ a + (a + y) + (a + y) = 3a + 2y = 180 (ABD)
{ a + (a + b) + (a + b) = 3a + 2b = 180 (ACD)
{ (y + (a+b)) + b + b = a + y + 3b = 180 (BCD)
{ ((a+y) + b) + y + y = a + b + 3y = 180 (ABC)
Из 1 уравнения вычитаем 2 уравнение
2y - 2b = 0
b = y
Подставляем
{ 3a + 2b = 180
{ a + 4b = 180
Из 1 уравнения вычитаем 2 уравнение
2a - 2b = 0
a = b
То есть все три угла равны друг другу
a = b = y
3a + 2a = 5a = 180
a = b = y = 180/5 = 36 градусов.
Самый большой угол
y + (a+b) = 3a = 3*36 = 108 градусов.
Объяснение:
6)Узнаем периметр и площадь меньшего треугольника: p=3*а3=18√3
s=(a²√3)/4=(36*3√3)/4=27√3 кв. ед.
для маленького треугольника данная окружность описанная, поэтому ее радиус будет R=(a3√3)/3=(6√3*√3)/3=6
Для большего треугольника это окружность вписанная, поэтому R=(A√3)/6 => A=6R/√3=6*6/√3=36/√3=12√3
P=3A=12√3*3=36√3
S=(a²√3)/4=(144*3√3)/4=108√3 кв.ед.
9)p=4* 5√3=20√3
s=a²=(5√3)²=25*3=75 кв.ед
Так как у описанной вокруг меньшего квадрата окружности такой же радиус, что и у вписанной в больший кавдрат (ведь это одна и та же окружность), то можем их приравнять
R=(a√2)/2
r=A/2
(a√2)/2=A/2
A=2*(a√2)/2=a√2=5√3*√2=5√6
P=4A=4*5√6=20√6
S=A²=(5√6)²=25*6=150 кв.ед.
12) Для шестиугольника данная окружность описанная, а для квадрата--вписанная. Приравняем формулы для радиуса этой окружности
R=a6
r=a4/2
a6=a4/2=(4√2)/2=2√2
P4=4*a4=4*4√2=16√2
S4=(a4)²=(4√2)²=16*2=32 кв.ед.