У вас получается 2 треугольника А1 К В1 и А2 К В2 Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей) A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же. КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
Δ ABC - правильный ⇒ АВ=ВС=АС и ∠А=∠В=∠С=60° DB=DA=DC=6 ⇒ равные наклонные имеют равные проекции NB=NA=NC ⇒ N - центр описанной окружности
∠ADN=∠BDN=CDN=30°
Из прямоугольного треугольника АDN R=AN=3 - катет против угла в 30° градусов равен половине гипотенузы. H(пирамиды)=DN=√(6²-3²)=√27=3√3 cм. По формуле нахождения радиуса R окружности, описанной около равностороннего треугольника cо стороной а: R=(a√3)/3 легко найти сторону треугольника.
3=(a√3)/3 ⇒a=3√3 см.
S(ΔABC)=(1/2)·a·a·sin60°=(a²√3)/4
При а=3√3 S(ΔABC)=(27√3)/4 - площадь основания
Для равностороннего треугольника N- является и центром вписанной окружности
NL=NK=r
r=(a√3)/6=3/2 Из Δ DNL по теореме Пифагора апофема боковой грани
h=DL=√(DN²+NL²)=√(27+(9/4))=3√10/2.
S (бок)=(1/2)·Р ( осн.) ·Н=(1/2)·(9√3·)(3√3)=81/2=40,5 кв см.
Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей)
A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же.
КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
ответ:ответ:В1В2= КВ2-КВ1 = 18-8=10см
DB=DA=DC=6 ⇒ равные наклонные имеют равные проекции
NB=NA=NC ⇒ N - центр описанной окружности
∠ADN=∠BDN=CDN=30°
Из прямоугольного треугольника АDN
R=AN=3 - катет против угла в 30° градусов равен половине гипотенузы.
H(пирамиды)=DN=√(6²-3²)=√27=3√3 cм.
По формуле нахождения радиуса R окружности, описанной около равностороннего треугольника cо стороной а:
R=(a√3)/3 легко найти сторону треугольника.
3=(a√3)/3 ⇒a=3√3 см.
S(ΔABC)=(1/2)·a·a·sin60°=(a²√3)/4
При а=3√3
S(ΔABC)=(27√3)/4 - площадь основания
Для равностороннего треугольника N- является и центром вписанной окружности
NL=NK=r
r=(a√3)/6=3/2
Из Δ DNL по теореме Пифагора апофема боковой грани
h=DL=√(DN²+NL²)=√(27+(9/4))=3√10/2.
S (бок)=(1/2)·Р ( осн.) ·Н=(1/2)·(9√3·)(3√3)=81/2=40,5 кв см.
О т в е т.3√3 см; 40,5 кв. см