Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
обозначим вершины ромба А В С Д с диагоналями АС и ВД а точку их пересечения О. Диагонали ромба пересекаясь делятся пополам под прямым углом, образуя 4 равных прямоугольных треугольника, а также противоположные углы ромба равны и диагонали при пересечении делят углы из которых они проведены, пополам, поэтому АО=СО=2÷2=1см, ВО=ДО=2√3÷2=√3см
Теперь найдём угол через тангенс угла АВО. Тангенс угла - это отношение противолежащего от
угла катета к прилежащему:
tg 1/√3=30°- это половина угла В,
Тогда <В=<Д=30×2=60°
Сумма углов ромба, прилегающие к одной стороне, составляет 180°, поэтому <А=<С=180–60=120°
обращаю внимание что 1/√3=√3/3, поскольку 1/√3 - это сокращённая дробь от √3/3. В тригонометрической таблице указано именно √3/3
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
ΔOKD: OK = KD · cos (α/2)
Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13
cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13
Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91
<А=<С=120°, <В<Д=60°
Объяснение:
обозначим вершины ромба А В С Д с диагоналями АС и ВД а точку их пересечения О. Диагонали ромба пересекаясь делятся пополам под прямым углом, образуя 4 равных прямоугольных треугольника, а также противоположные углы ромба равны и диагонали при пересечении делят углы из которых они проведены, пополам, поэтому АО=СО=2÷2=1см, ВО=ДО=2√3÷2=√3см
Теперь найдём угол через тангенс угла АВО. Тангенс угла - это отношение противолежащего от
угла катета к прилежащему:
tg 1/√3=30°- это половина угла В,
Тогда <В=<Д=30×2=60°
Сумма углов ромба, прилегающие к одной стороне, составляет 180°, поэтому <А=<С=180–60=120°
обращаю внимание что 1/√3=√3/3, поскольку 1/√3 - это сокращённая дробь от √3/3. В тригонометрической таблице указано именно √3/3