Треугольник ABC, вписанный в окружность, делит её на три дуги. Вычисли градусную меру третьей дуги и углы треугольника, если известны две другие дуги: ∪AB = 100° и ∪BC = 150°. ∪AC =
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
Точка F(792;6203) лежит в 1-й координатной четверти;
точка K(953;-712) лежит в 4-й координатной четверти;
точка L(-37401;-47732) лежит в 3-й координатной четверти.
Объяснение:
Задание
Не виконуючи побудови з'ясуйте,у які координатній чверті лежить точка F(792;6203),K(953;-712),L(-37401;-47732).
Решение
1) Коррдинаты точки F(792;6203):
х = 792 > 0
у = 6203 > 0
Если х>0 и у>0, то точка лежит в 1-й координатной четверти.
ответ: точка F(792;6203) лежит в 1-й координатной четверти.
2) Координаты точки K(953;-712):
х = 953 > 0
у = - 712< 0.
Если х>0, а у<0, то точка лежит в 4-й координатной четверти.
ответ: точка K(953;-712) лежит в 4-й координатной четверти.
3) Координаты точки L(-37401;-47732):
х = -37401 < 0
у = - 47732< 0.
Если х<0 и у<0, то точка лежит в 3-й координатной четверти.
ответ: точка L(-37401;-47732) лежит в 3-й координатной четверти.
Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.