Пусть в треугольнике АВС угол А равен а, угол с равен ь, проведены биссектрисы AD и СЕ, которые пересекаются в точке О (см. рисунок). Рассмотрим треугольник АОС. Сумма его углов равна 180 градусам, тогда угол АОС равен 180-1/2ВАC-1/2BCA= 180- AC - ECA = 180 - 1/2 (a+b). Угол, под которым пересекаются две прямые это наименьший из углов, которые получаются при их пересечении. Докажем, что угол ЕОА будет меньше угла АОС, тогда угол ЕОА - угол, под которым пересекаются биссектрисы. Действительно, угол ЕОА является смежным с углом АОС, тогда он равен 1/2(a+b). Так как а+ь<180, 1/2(a+b)<90 и 2(a + b) < 180 /2(a+b), то есть, какими бы ни были углы а и ь, угол ЕОА всегда будет меньше угла АОС. Окончательный ответ - 1/2(a+b).
1.угол а=90-21=69
ответ:69
2.угол е =90 -45=45. Значит ∆ове-равнобедренный. И следовательно ое=ов=34 см
ответ:34
3. Угол с=90-60=30. По свойству - Катет прямоугольного треугольника, лежащий против угла в 30 градусов, равен половине гипотенузы. Следовательно ем= 84 :2=42
ответ:42
4. Сума острых углов в прямоугольном ∆ равна 90 градусов. Значит 8х+7х=90
15х=90
Х=6
8х=48
7х=42
ответ:1)48;2)42
5.т.к. сумма острых углов в прямоугольном треугольнике = 90, то х+42+х=90
2х=48
Х=24
42+х=66
ответ:1)24;2)66
Объяснение: усе
Пусть в треугольнике АВС угол А равен а, угол с равен ь, проведены биссектрисы AD и СЕ, которые пересекаются в точке О (см. рисунок). Рассмотрим треугольник АОС. Сумма его углов равна 180 градусам, тогда угол АОС равен 180-1/2ВАC-1/2BCA= 180- AC - ECA = 180 - 1/2 (a+b). Угол, под которым пересекаются две прямые это наименьший из углов, которые получаются при их пересечении. Докажем, что угол ЕОА будет меньше угла АОС, тогда угол ЕОА - угол, под которым пересекаются биссектрисы. Действительно, угол ЕОА является смежным с углом АОС, тогда он равен 1/2(a+b). Так как а+ь<180, 1/2(a+b)<90 и 2(a + b) < 180 /2(a+b), то есть, какими бы ни были углы а и ь, угол ЕОА всегда будет меньше угла АОС. Окончательный ответ - 1/2(a+b).