1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.
угол А - 36 градусов, угол В - 27 градусов, угол С - 117 градусов.
Объяснение:
1. По теореме косинусов: а^2 + b^2 + c^2 = 2 x b x c x cos C
cos C = (b^2 + c^2 - a^2) / 2 x b x c
cosC = (4^2 + 6^2 - 3^2) / 2 x 4 x 6
(16 + 36 - 9) / 48 = 43 / 48 = 0.8958
угол С по таблице Брадиса примерно равен 27 градусов.
2. соs A = cos C = (a^2 + c^2 - b^2) / 2 x a x c
cosA = (3^2 + 6^2 - 4^2) / 2 x 3 x 6 = (9 + 36 - 16) / 36 = 29 / 36 = 0.8055
угол A по таблице Брадиса примерно равен 36 градусов.
3. Угол В = 180 - А - С = 180 - 36 - 27 = 117
1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Получаем уравнение:
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.
угол А - 36 градусов, угол В - 27 градусов, угол С - 117 градусов.
Объяснение:
1. По теореме косинусов: а^2 + b^2 + c^2 = 2 x b x c x cos C
cos C = (b^2 + c^2 - a^2) / 2 x b x c
cosC = (4^2 + 6^2 - 3^2) / 2 x 4 x 6
(16 + 36 - 9) / 48 = 43 / 48 = 0.8958
угол С по таблице Брадиса примерно равен 27 градусов.
2. соs A = cos C = (a^2 + c^2 - b^2) / 2 x a x c
cosA = (3^2 + 6^2 - 4^2) / 2 x 3 x 6 = (9 + 36 - 16) / 36 = 29 / 36 = 0.8055
угол A по таблице Брадиса примерно равен 36 градусов.
3. Угол В = 180 - А - С = 180 - 36 - 27 = 117