В плоскости основания точкой, равноудалённой от вершин треугольника является центр описанной окружности. Восстановленный из этой точки перпендикуляр к плоскости основания будет местом точек, равноудалённых от вершин треугольника. Исходный треугольник прямоугольный, его гипотенуза с² = a² + b² = 24² + 18² = 576 + 324 = 900 c = √900 = 30 дм Гипотенуза является диаметром описанной окружности. А₁С₁ = 30 дм А₁О₁ = А₁С₁/2 = 15 дм АТ = 25 дм высоту исходной пирамиды h = О₁Т найдём по теореме Пифагора О₁Т² + А₁О₁² = АТ² h² + 15² = 25² h² = 625-225 = 400 h = 20 дм Объём полной пирамиды А₁Б₁С₁Т найдём, высчислив площадь основания как половину произведения катетов. Высота пирамиды тоже известна. V(А₁Б₁С₁Т) = 1/3*S(А₁Б₁С₁)*h = 1/3*1/2*24*18*20 = 8*9*20 = 1440 дм³ Все размеры срезаемой верхней части пирамиды в 2 раза меньше размеров исходной пирамиды, т.к. отрезки между середин рёбер являются средними линиями соответствующих треугольников А₂Т = А₁Т/2 Б₂Т = Б₁Т/2 т.е. коэффициент подобия k = 1/2. При этом площади тел относятся как k², а объёмы как k³ Объём срезаемой части пирамиды V(А₂Б₂С₂Т) = k³*V(А₁Б₁С₁Т) = 1/8*1440 =180 дм³ И объём усечённой пирамиды V = V(А₁Б₁С₁Т) - V(А₂Б₂С₂Т) = 1440 - 180 = 1260 дм³
Если по простому пересказать условие - то биссектрисы двух разных треугольников делят противолежащие стороны в равных отношениях. обозначим отношение, в котором биссектрисы делят стороны как z z = AE/EC = A1E1/E1C1
Но согласно теореме о биссектрисе противоположная сторона делится пропорционально прилежащим BA/AE = BC/EC AE = z*EC BA/(z*EC) = BC/EC BA/BC = z или ВА = z*BC (1) Т.е. сами прилежащие к углу В стороны в треугольнике АВС относятся как z Анатигично показывается, что и B₁A₁/B₁C₁ = z или В₁А₁ = z*B₁C₁ (2) Разделим выражение (2) на выражение (1) В₁А₁/ВА = z*B₁C₁/(z*BC) = B₁C₁/BC Т.е. треугольники подобны по второму признаку подобия - равный угол и пропорциональные две стороны.
Исходный треугольник прямоугольный, его гипотенуза
с² = a² + b² = 24² + 18² = 576 + 324 = 900
c = √900 = 30 дм
Гипотенуза является диаметром описанной окружности.
А₁С₁ = 30 дм
А₁О₁ = А₁С₁/2 = 15 дм
АТ = 25 дм
высоту исходной пирамиды h = О₁Т найдём по теореме Пифагора
О₁Т² + А₁О₁² = АТ²
h² + 15² = 25²
h² = 625-225 = 400
h = 20 дм
Объём полной пирамиды А₁Б₁С₁Т найдём, высчислив площадь основания как половину произведения катетов. Высота пирамиды тоже известна.
V(А₁Б₁С₁Т) = 1/3*S(А₁Б₁С₁)*h = 1/3*1/2*24*18*20 = 8*9*20 = 1440 дм³
Все размеры срезаемой верхней части пирамиды в 2 раза меньше размеров исходной пирамиды, т.к. отрезки между середин рёбер являются средними линиями соответствующих треугольников
А₂Т = А₁Т/2
Б₂Т = Б₁Т/2
т.е. коэффициент подобия
k = 1/2.
При этом площади тел относятся как k², а объёмы как k³
Объём срезаемой части пирамиды
V(А₂Б₂С₂Т) = k³*V(А₁Б₁С₁Т) = 1/8*1440 =180 дм³
И объём усечённой пирамиды
V = V(А₁Б₁С₁Т) - V(А₂Б₂С₂Т) = 1440 - 180 = 1260 дм³
обозначим отношение, в котором биссектрисы делят стороны как z
z = AE/EC = A1E1/E1C1
Но согласно теореме о биссектрисе противоположная сторона делится пропорционально прилежащим
BA/AE = BC/EC
AE = z*EC
BA/(z*EC) = BC/EC
BA/BC = z
или ВА = z*BC (1)
Т.е. сами прилежащие к углу В стороны в треугольнике АВС относятся как z
Анатигично показывается, что и
B₁A₁/B₁C₁ = z
или В₁А₁ = z*B₁C₁ (2)
Разделим выражение (2) на выражение (1)
В₁А₁/ВА = z*B₁C₁/(z*BC) = B₁C₁/BC
Т.е. треугольники подобны по второму признаку подобия - равный угол и пропорциональные две стороны.