Треугольник АВС - прямоугольный с прямым углом С. Биссектриса ВL и медиана СМ пересекаются в точке К. Найти отношение LК:ВК, если известно, чтл МК:СК=5:6.
Найти длины боковых сторон треугольника АВС, то есть АВ и ВС — ?
1. Рассмотрим равносторонний треугольник ACD. У него АС = АD = DС. Периметр треугольника ACD, то есть Р ACD = АС + АD + DС, тогда АС = АD = DС = 21 : 3 = 7 (сантиметров).
2. Рассмотрим треугольник АВС. Его периметр, то есть Р АВС = АВ + ВС + АС, а АВ = ВС, то получим:
Дано:
треугольник АВС равнобедренный,
АС — основание,
треугольник ACD равносторонний,
Р АВС = 34 сантиметра,
Р ACD = 21 сантиметр.
Найти длины боковых сторон треугольника АВС, то есть АВ и ВС — ?
1. Рассмотрим равносторонний треугольник ACD. У него АС = АD = DС. Периметр треугольника ACD, то есть Р ACD = АС + АD + DС, тогда АС = АD = DС = 21 : 3 = 7 (сантиметров).
2. Рассмотрим треугольник АВС. Его периметр, то есть Р АВС = АВ + ВС + АС, а АВ = ВС, то получим:
АВ = ВС = (34 - 7): 2;
АВ = ВС = 13,5 сантиметров.
ответ: 13,5 сантиметров.
1. S = 1/2 · 3,4 · 5 · sin70° ≈ 17/2 · 0,9397 ≈ 7,99
2. S = 1/2 · 0,8 · 0,6 · sin110° ≈ 0,24 · 0,9397 ≈ 0,23
3. Найдем третий угол треугольника:
φ = 180° - (120° + 30°) = 30°, ⇒ треугольник равнобедренный,
b = a = 16, задача сводится к предыдущей:
S = 1/2 · 16 · 16 · sin120° = 256/2 · √3/2 = 64√3
4. Найдем третий угол треугольника:
φ = 180° - (70° + 48°) = 62°
По теореме синусов найдем сторону b:
b : sin70° = a : sin62°
b = a · sin70° / sin62° ≈ 15,6 · 0,9397 / 0,8829 ≈ 16,6
S = 1/2 ab · sin48° ≈ 1/2 · 15,6 · 16,6 · 0,7431 ≈ 96,2