Треугольник авс – прямоугольный (∠с =, сн- высота, ∠a =, ав = 12 см. найти hb. (в ответе укажите только числовое значение. десятичную дробь следует писать через запятую без пробелов.)
Пусть ABCD - равнобедренная трапеция, E, F, K, L - середины сторон трапеции, тогда EK=15 см - средняя линия трапеции, FL=6 см - высота и O=FL∩EK - точка пересечения диагоналей четырехугольника EFKL. Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба). Площадь ромба можно найти по формуле: S=1/2*d1*d2, где d1 и d2 - диагонали ромба. S=1/2*6*15=45 (см²). ответ: 45 см².
30 см
Объяснение:
Рассмотрим вложение.
Нам дан ΔАВС: ∠А = 90°, ВС = 13 см
Пусть АВ = х см, тогда АС = х + 7 см. Воспользуемся т.Пифагора для нахождения стороны.
АВ² + АС² = ВС²
х² + (х + 7)² = 13²
х² + х² + 14х + 49 = 169
2х² + 14х + 49 - 169 = 0
2х² + 14х - 120 = 0 |:2
х² + 7х - 60 = 0
D = 7² - 4 * (-60) = 49 + 240 = 289 = 17²
x₁ = (-7 - 17)/2 = -24/2 = -12
x₂ = (-7 + 17)/2 = 10/2 = 5
т.к. сторона не может быть отрицательна, то АВ = 5 см, тогда
АС = 5 + 7 = 12 см
Чтобы найти периметр треугольника, надо сложить все стороны.
Р = АВ + ВС + АС = 5 + 13 + 12 = 30 см
Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба).
Площадь ромба можно найти по формуле:
S=1/2*d1*d2, где d1 и d2 - диагонали ромба.
S=1/2*6*15=45 (см²).
ответ: 45 см².