1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
Площадь треугольника равна половине произведения высоты на сторону, к которой проведена.
S=a•h:2
• Если высоты двух треугольников равны, то их площади относятся как основания.
Высота ∆ ADC и ∆ ABC общая.
Подробно.
S(ABD):S(ABC)=AD:AC
Точка D по условию делит АС в отношении 1:5.
Примем AD=a, тогда DC=5a.
AC=а+5а=6a
S(ABD):A(ABC)=1/6
S(ABC)=36
S(ABD)=36:6=6 см²
-----------
Площадь треугольника можно найти и по формуле
S=a•b•sinα:2, где a и b стороны треугольника, α - угол между ними.
Угол А общий для ∆ABD и ∆ABC, поэтому
S (ABD):S (ABC)=AB•AD:AB•AC, т.е. получается то же отношение AD:AC, равное для данного треугольника 1/6.