Треугольник авс прямоугольный (уголв =90°). точка о принадлежит катету ав при чем, что ао=вс, а точка е принадлежит катету вс так, что се=ов. найдите градусную меру острого угла между прямыми ае и со
С параллельного переноса вдоль оснований трапеций сдвинем AC так, чтобы угол DC'B стал прямым. При этом сумма "оснований" не меняется, т.к. AA' = CC'; с очевидностью не меняется и высота (=расстояние между параллельными прямыми). Получившийся четырехугольник A'BC'D - квадрат (доказать это можно, например, так: треугольники ADA' и CBC' равны (AB = BC, AA' = CC', BCC' = ADD'), тогда угол BA'D прямой, тогда A'BC'D - прямоугольник, т.к. диагонали перпендикулярны, то квадрат). Но для квадрата утверждение задачи очевидно.
Отрезок ЕС равен 1 см.
Объяснение:
Требуется найти отрезок ОС.
Дано: ΔАВС - равнобедренный;
∠А = 75°;
CD ⊥ АВ; DE ⊥ BC;
ВЕ = 3 см.
Найти: ЕС.
1. Рассмотрим ΔΔАВС - равнобедренный;
Углы при основании равнобедренного треугольника равны.⇒ ∠А = ∠С = 75°
Сумма углов треугольника равна 180°.⇒ ∠В = 180° - (75° + 75°) = 30°
2. Рассмотрим ΔDBE - прямоугольный.
∠В = 30°
Катет, лежащий против угла в 30°, равен половине гипотенузы.Пусть DE = x см, тогда DB = 2x см.
По теореме Пифагора:
BD² = DE² + BE²
4x² = x² + 9
3x² = 9
x² = 3
x = √3
DE = √3 см
3. Рассмотрим ΔАDC - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠1 = 90° - ∠А = 90° - 75° = 15°
4. Рассмотрим ΔEDC - прямоугольный.
∠2 = ∠С - ∠1 = 75° - 15° = 60°
∠3 = 90° - ∠2 = 90° - 60° = 30°
Пусть ЕС = у см, тогда DC = 2у см (катет, лежащий против угла 30°)
По теореме Пифагора:
DC² = DE² + EC²
4y² = 3 + y²
3y² = 3
y² = 1
y = 1
Отрезок ЕС равен 1 см.