Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
S(ABCD) --?
∠DAC =∠ACB ( как накрест лежащие углы ) ⇒∠BAС=∠ACB .те. треугольник
ABС равнобедренный (AB=BС =15 см ) . По известным сторонам можно определить площадь трапеции .
Проведем BE ⊥ AD . AE = (AD - BC)/2 =( 33 -15)/2 =9 (см ) .
Из прямоугольного ΔABE получаем BE =16 см * * * (3*3 ; 3*4 ;3*5 * * *
S(ABCD) = ((AD+BC)/2)*BE =((33+15)/2) *16 =384 (см² ).
* * * * * * * второй
Можно проведем BE || CD ;E ∈ [AD] .Треугольник ABE известен по трем сторонам: BE =CD ;CD; ED=AD - BC. S(ABCD)/S(ABE) =(AD+BC)/(AD-BC).
S(ABCD)S(ABE) = S(ABE) *(AD+BC)/(AD-BC) .
.
Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
4+х=20
х=12см
ответ: меньшее основание=4см, большее основание=12см.