Треугольник ДOM с углом ДOM = 69 градусов повернули на некоторый острый угол вокруг точки O. При этом точка Д перешла в точку N, лежащую на отрезке ДM, а точка M -- в такую точку Р, что OM перпендикулярен NР. Найдите угол поворота (в градусах). 0
Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Диагональ ромба разбивает его на два равных треугольника, со сторонами равными сторонам ромба и третья сторона - диагональ ромба, все стороны равны. В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий. Сумма углов четырехугольника 360°. 360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба 240°:2=120° - градусная мера противолежащих углов ромба второй пары ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов. ответ: два угла по 60 градусов и два по 120 градусов.
ответ: 20 см
Решение: смотри рисунок.
Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Периметр параллелограмма =KM+MA+AN+NK=BM+MA+AN+NC=BA+AC=10+10=20 (см)
В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий.
Сумма углов четырехугольника 360°.
360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба
240°:2=120° - градусная мера противолежащих углов ромба второй пары
ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов.
ответ: два угла по 60 градусов и два по 120 градусов.