Треугольник FDC и F1D1C1 подобны так, что FD и FC соответствуют сторонам F1D1 и F1C1. Найдите неизвестные стороны треугольников, если FD=6 FC=8 F1D1=3 F1C1=4
Диагональ куба равна 9 см.Найдите площадь его полной поверхности.
Пусть x - сторона куба. Площадь полной поверхности куба равна сумме площадей граней. Грани представляют из себя квадраты. Площадь квадрата см. Граней куба 6, поэтому площадь полной его поверхности см
Обозначим куб буквами ABCDA1B1C1D1, где ABCD - нижнее основание. Рассмотрим треугольник ABD. Найдем сторону BD. По теореме Пифагора
Периметр 20-угольника равен 20 * 21, тогда точки делят периметр на отрезки длины 20 * 21/21 = 20 < 21. Значит, найдётся сторона 20-угольника, содержащая две точки 21-угольника.
Пусть C1C2C3...C21 - 21-угольник, A1A2A3...A20 - 20-угольник, и точки C1 и C20 лежат на A20A1. Обозначим C1A1 = 1 - x, тогда A1C2 = 19 + x, C2A2 = 2 - x, A2C3 = 18 + x, ..., C20A20 = 20 - x, A20C21 = x. Очевидно, 0 ≤ x ≤ 1.
Разность площадей 20-угольника и 21-угольника равна сумме площадей треугольников C1A1C2, C2A2C3, C3A3C4, ..., C20A20C21. Так как все углы C1AC2, ..., C20A20C21 равны между собой и равны 180° - 360°/20 = 180° - 18°, то сумма площадей равна S = 1/2 sin(180° - 18°) * ((1 - x)(19 + x) + (2 - x)(18 + x) + ... + (20 - x) x) = sin 18° ((1 - x)(19 + x) + (2 - x)(18 + x) + ... + (20 - x)x)/2
S(x) - квадратный трёхчлен относительно x, старший коэффициент отрицателен, поэтому максимум достигается в вершине квадратичной параболы. Так ка S(x) = S(1 - x), то парабола S(x) симметрична относительно x = 1/2, а значит, максимальное значение равно S(1/2).
Диагональ куба равна 9 см.Найдите площадь его полной поверхности.
Пусть x - сторона куба. Площадь полной поверхности куба равна сумме площадей граней. Грани представляют из себя квадраты. Площадь квадрата см. Граней куба 6, поэтому площадь полной его поверхности см
Обозначим куб буквами ABCDA1B1C1D1, где ABCD - нижнее основание. Рассмотрим треугольник ABD. Найдем сторону BD. По теореме Пифагора
Рассмотрим треугольник DBB1, DB1=9см.
Находим площадь полной поверхности куба
см
ответ: площадь полной поверхности куба 162см
Пусть C1C2C3...C21 - 21-угольник, A1A2A3...A20 - 20-угольник, и точки C1 и C20 лежат на A20A1. Обозначим C1A1 = 1 - x, тогда A1C2 = 19 + x, C2A2 = 2 - x, A2C3 = 18 + x, ..., C20A20 = 20 - x, A20C21 = x. Очевидно, 0 ≤ x ≤ 1.
Разность площадей 20-угольника и 21-угольника равна сумме площадей треугольников C1A1C2, C2A2C3, C3A3C4, ..., C20A20C21. Так как все углы C1AC2, ..., C20A20C21 равны между собой и равны 180° - 360°/20 = 180° - 18°, то сумма площадей равна
S = 1/2 sin(180° - 18°) * ((1 - x)(19 + x) + (2 - x)(18 + x) + ... + (20 - x) x) = sin 18° ((1 - x)(19 + x) + (2 - x)(18 + x) + ... + (20 - x)x)/2
S(x) - квадратный трёхчлен относительно x, старший коэффициент отрицателен, поэтому максимум достигается в вершине квадратичной параболы. Так ка S(x) = S(1 - x), то парабола S(x) симметрична относительно x = 1/2, а значит, максимальное значение равно S(1/2).
Осталось вычислить значение. Выписываю сумму произведений в скобках:
0,5 * 19,5 + 1,5 * 18,5 + 2,5 * 17,5 + ... + 19,5 * 0,5 = (10 - 9,5)(10 + 9,5) + (10 - 8,5)(10 + 8,5) + ... + (10 - 0,5)(10 + 0,5) + (10 + 0,5)(10 - 0,5) + ... (10 + 9,5)(10 - 9,5) = 20 * 10² - 2 * 0.5² (1² + 3² + 5² + ... + 17² + 19²) = 2000 - 0.5 * 1330 = 1335
1² + 3² + ... + 19² можно посчитать вручную на листочке.
S(0.5) = 1335 sin18° / 2 - максимальное значение.