Sabcd=a*h ( Площадь паралелограмма равна произведению его основания на высоту) Если BF и CM - перпендикуляры к прямой AD, то треугольник ABF=треугольнику DCE (так как AB=DC и проекция AF=DM). Поэтому площади этих треугольников равны. Площадь паралеллограмма ABCD равна сумме двух фигур: треугольника ABF (равного треугольникуDCM) и трапеции FBCD. Значит, если от площади ABCD вычесть площадь треугольника ABF, получим площадь трапеции FBCD. Тогда площадь параллелограмма ABCD равна площади прямоугольника FBCM. А стороны этого прямоугольника равны BC=AD=а и BF=h. S ABCD = AD•BF=a•h.
дан треугольник АВС;угол В равен альфа, угол С равен 90 градусов. Площадь прямоугольного треугольника равна половине произведения катетов.
1) найдем катеты, используя функцию синус и косинус острого угла:
а)sin(альфа)=АС\с следовательно, АС=с*sin(альфа) \\синус - отношение противолежащего углу катета АС к гипотенузе с.
б)cos(альфа)=CВ\с следовательно, СВ=с*сos(альфа)\\косинус - отношение прилежащего углу катета СВ и гипотенузе.
в) нам известны катеты СВ и АС, и через них мы легко можем найти площадь:
S=CB*AC/2=sin(альфа)*cos(альфа)*c^2/2
Sabcd=a*h ( Площадь паралелограмма равна произведению его основания на высоту)
Если BF и CM - перпендикуляры к прямой AD, то треугольник ABF=треугольнику DCE
(так как AB=DC и проекция AF=DM). Поэтому площади этих треугольников равны. Площадь паралеллограмма ABCD равна сумме двух фигур: треугольника ABF (равного треугольникуDCM) и трапеции FBCD. Значит, если от площади ABCD вычесть площадь треугольника ABF, получим площадь трапеции FBCD. Тогда площадь параллелограмма ABCD равна площади прямоугольника FBCM. А стороны этого прямоугольника равны BC=AD=а и BF=h.
S ABCD = AD•BF=a•h.