Треугольник PKL задан координатами своих вершин Р(2;-3), К(-1;3), L(5;1), а) зная, что вектор KP= вектору а, KL= вектору в, выразите вектор КМ- медиану треугольника PKL через векторы а и в;
б) Вычислите косинус угла К, используя свойство скалярного произведения векторов.
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a