АВСД - параллелограмм
Из точки В проведено 2 перпендикуляра на стороны АД и СД
Назовем их ВК и ВМ соответственно
ВК = 6
ВМ = 10
СД = АВ (как стороны параллелограмма)
Р = 2АВ + 2АД = 48
АВ + АД = 24
Диагональ ВД делит параллелограм на равные по площади треугольники с высотами ВК и ВМ
Площадь АВД = 1/2 * АД * ВК = 3 АД
Площадь ДВС = 1/2 * ДС * ВМ = 5 ДС = 5 АВ
сложим систему: 3 АД = 5 АВ АВ + АД = 24 АВ = 24 - АД 3 АД = 5(24 - АД) 3 АД = 120 - 5 АД 8 АД = 120 АД = 15 АВ = 24 - 15 = 9 Разность между смежными сторонами параллелограмма равна 15 - 9 = 6
Так как длины отрезков касательных, проведенных к окружности из одной точки равны, то AR = AP, BP = BQ, CQ = CR.
Для удобства обозначим попарно равные отрезки AR = AP = X, BP = BQ = Y, CQ = CR = Z.
Тогда:
АВ = Х + Y = 10. (1).
AC = X + Z = 5. (2).
BC = Y + Z = 12. (3).
Решим систему их трех уравнений методом сложения.
Вычтем из первого уравнения второе.
(X + Y) – (X +Z) = 10 – 5.
Y – Z = 5.
Прибавим третье уравнение к последнему.
(Y + Z) + (Y – Z) = 12 + 5.
2 * Y = 17.
Y = 17 / 2 = 8,5 cm.
Подставим значение Y и найдем X и Z.
Х + 8,5 = 10.
Х = 10 – 8,5 = 1,5 см.
Z = 12 – Y = 12 – 8,5 = 3,5 cм.
Тогда: AR = AP = 1,5 см, BP = BQ = 8,5 см, CQ = CR = 3,5 см.
ответ: AR = AP = 1,5 см, BP = BQ = 8,5 см, CQ = CR = 3,5 см.
АВСД - параллелограмм
Из точки В проведено 2 перпендикуляра на стороны АД и СД
Назовем их ВК и ВМ соответственно
ВК = 6
ВМ = 10
СД = АВ (как стороны параллелограмма)
Р = 2АВ + 2АД = 48
АВ + АД = 24
Диагональ ВД делит параллелограм на равные по площади треугольники с высотами ВК и ВМ
Площадь АВД = 1/2 * АД * ВК = 3 АД
Площадь ДВС = 1/2 * ДС * ВМ = 5 ДС = 5 АВ
сложим систему: 3 АД = 5 АВ АВ + АД = 24 АВ = 24 - АД 3 АД = 5(24 - АД) 3 АД = 120 - 5 АД 8 АД = 120 АД = 15 АВ = 24 - 15 = 9 Разность между смежными сторонами параллелограмма равна 15 - 9 = 6
Так как длины отрезков касательных, проведенных к окружности из одной точки равны, то AR = AP, BP = BQ, CQ = CR.
Для удобства обозначим попарно равные отрезки AR = AP = X, BP = BQ = Y, CQ = CR = Z.
Тогда:
АВ = Х + Y = 10. (1).
AC = X + Z = 5. (2).
BC = Y + Z = 12. (3).
Решим систему их трех уравнений методом сложения.
Вычтем из первого уравнения второе.
(X + Y) – (X +Z) = 10 – 5.
Y – Z = 5.
Прибавим третье уравнение к последнему.
(Y + Z) + (Y – Z) = 12 + 5.
2 * Y = 17.
Y = 17 / 2 = 8,5 cm.
Подставим значение Y и найдем X и Z.
Х + 8,5 = 10.
Х = 10 – 8,5 = 1,5 см.
Z = 12 – Y = 12 – 8,5 = 3,5 cм.
Тогда: AR = AP = 1,5 см, BP = BQ = 8,5 см, CQ = CR = 3,5 см.
ответ: AR = AP = 1,5 см, BP = BQ = 8,5 см, CQ = CR = 3,5 см.