Треугольник spk равнобедренный с основанием SK а)Найди длину боковой стороны треугольника если его периметр равен 49 см основание 14 см б)Чему равен угол 2,если угол 1=29⁰
1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.