Треугольнике АДЕ прямая параллельная к стороне АЕ пересекает сторону АД и ДЕ соответственно в точках К и М. Найдите сторону МЕ, если АЕ= 81, КМ= 27 и ДМ= 16
1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.
Обозначим а - сторона,
h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.
Рассмотрим треугольник образованный стороной высотой (биссектрисой)
и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.
Справедливо: а=h/cos30°. a=58×2=116.
2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=
1. Достраиваем исходный прямоугольный треугольник до прямоугольника. 2. Проводим вторую диагональ получившегося прямоугольника. 3. Получилось четыре одинаковых прямоугольных треугольника. 4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей. 5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника. 6. Площадь прямоугольника 8*5=40 см². 7. Площадь вписанного прямоугольника 40/4=10 см².
1) 116
2) 62°
3) 416
1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.
Обозначим а - сторона,
h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.
Рассмотрим треугольник образованный стороной высотой (биссектрисой)
и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.
Справедливо: а=h/cos30°. a=58×2=116.
2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=
62°.
3)
BC=2×MC; AC=2×NC.
MC=(1/2)×BC; NC=(1/2)×AC
S(ABC)=1/2×AC×BC×sinC,
S(MNC)=1/2×MC×NC×sinC,
Отсюда S(ABC)=4×S(MNC)=4×104
S(ABC)=416
2. Проводим вторую диагональ получившегося прямоугольника.
3. Получилось четыре одинаковых прямоугольных треугольника.
4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей.
5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника.
6. Площадь прямоугольника 8*5=40 см².
7. Площадь вписанного прямоугольника 40/4=10 см².