Треугольники abc и a1b1c1 подобны, их сходственные стороны соответственно ab = 2 и a1b1=5. найдите площадь треугольника abc? если площадь треугольника a1b1c1 равна 100
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
ВЕРНО.
Первый признак подобия треугольников: если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
В условии говорится про три угла, так что два соответственно равны двум другим тем более.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
НЕВЕРНО.
Это утверждение справедливо только для квадрата. В произвольном прямоугольнике диагонали не перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
НЕВЕРНО.
У равностороннего треугольника есть оси симметрии. Центра симметрии нет.
Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
Задание решено Пользователем Tgz Знаток .
Исправлена опечатка.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
ВЕРНО.
Первый признак подобия треугольников: если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
В условии говорится про три угла, так что два соответственно равны двум другим тем более.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
НЕВЕРНО.
Это утверждение справедливо только для квадрата. В произвольном прямоугольнике диагонали не перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
НЕВЕРНО.
У равностороннего треугольника есть оси симметрии. Центра симметрии нет.
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.