Треугольники abc и a1b1c1 подобны, причем сторонам ab и bc соответствуют стороны , a1b1 и b1c1. найдите неизвестные стороны этих треугольников, если bc=5 см, ab=6 см, b1c1 =15 см, a1c1 = 21см.
Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
D (0, 0, 0) DA | OY, DC | OX, DD1 | OZ
D (0, 0, 0), A1 (0, 1, 3), M (2, 0, 5/3)
Плоскость DA1M имеет вид ax + by + cz + d=0 если мы подставим координаты таких точек: D, A1, M, то получится так:
{a • 0 + b • 0 + c • 0 + d = 0
{a • 0 + b • 1 + c • 3 + d = 0
{a • 2 + b • 0 + c • (5/3) + d = 0
{d = 0
{b = - 3c
{a= - 5c/6
Поэтому отсюда вектор нормали имеет координаты: n(5/6, 3, -1)
Затем по формуле S (расстояние) от точки: D1(0, 0, 3) =:
l=|(5/6 • 0 + 3 • 0 - 3)|/sqrt ((5/6)^2 + 3^2 + (- 1)^2) = 18/sqrt(385).
Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
АС=ВД=4√2+5√2=9√2
Проведем высоту ВН.
НД=полусумме оснований (свойство равнобедренной трапеции)
. Т.к. угол ВДН=45°, треугольник ВНД- равнобедренный, ВН=НД=9√2*sin 45º=9
S АВСД=произведению полусуммы оснований на высоту.
S АВСД=0,5•(8+10)•9=81 см²