Площадь трапеции равна полусумме оснований, умноженной на высоту.
Полусумма оснований равна (6+12):2=9 см
Высоту найдем из двух треугольников и приравняем найденные значения.
Опустим из С высоту Сн на АD
Её значение из треугольника АСн равно
13²-(12-х)²
Значение высоты из треугольника нСD
5²-х²
Приравняем эти значения
13²-(12-х)²=5²-х²
169-144+24х-х² = 25- -х²
24х=144+25 -169
24х=0
х=0
Из этого следует, что эта трапеция - прямоугольная.
Высота в ней равна боковой стороне и равна 5 см
Площадь трапеции равна
5*9=45 см₂
Числа 12, 13 и 5 наводят еще до решения задачи на мысль, что диагональ трапеции с основанием и боковой стороной 5 см составляет прямоугольный треугольник ( из так называемых троек Пифагора). Но это нужно обосновать. что мы и сделали.
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник. 1) Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1 2) Если требуется найти синус угла между отрезками, то выразив KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4 Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2)) откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))
Площадь трапеции равна полусумме оснований, умноженной на высоту.
Полусумма оснований равна (6+12):2=9 см
Высоту найдем из двух треугольников и приравняем найденные значения.
Опустим из С высоту Сн на АD
Её значение из треугольника АСн равно
13²-(12-х)²
Значение высоты из треугольника нСD
5²-х²
Приравняем эти значения
13²-(12-х)²=5²-х²
169-144+24х-х² = 25- -х²
24х=144+25 -169
24х=0
х=0
Из этого следует, что эта трапеция - прямоугольная.
Высота в ней равна боковой стороне и равна 5 см
Площадь трапеции равна
5*9=45 см₂
Числа 12, 13 и 5 наводят еще до решения задачи на мысль, что диагональ трапеции с основанием и боковой стороной 5 см составляет прямоугольный треугольник ( из так называемых троек Пифагора). Но это нужно обосновать. что мы и сделали.
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1
2)
Если требуется найти синус угла между отрезками, то выразив
KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то
(AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит
sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))