Треугольники ABC и AFC не лежат в одной плоскости. Точки M и N — середины сторон AB и BC треугольника ABC соответственно. В треугольнике AFC отрезок FH — высота, причем AF:AH=2:1, ‘AFC 108°. Определите взаимное расположение прямых MN и FC и найдите угол между ними.
ответ: 40cm
Объяснение:
Пусть трапеция ABCD . Большее основание это AD=45 см.
боковые стороны АВ =20см, CD=15cm.
Пусть точка пересечения биссетрисс Т , и по условию задачи Т принадлежит основанию ВС.
Заметим что ∡TAD=∡ATB (накрест лежащие). Но ∡BAT=∡TAD, так как АТ - биссетриса.
Отсюда следует, что ∡BAT=∡BTA => ΔABT - равнобедренный.
То есть АВ=ВТ=20см.
По той же причине и треугольник СТD тоже равнобедренный,
ТС=CD=15 cm
Тогда ВС=ВТ+СТ=20+15=35 см
Тогда средняя линия трапеции MN=(AD+BC)/2=(45+35)/2= 40 cm
Объяснение:
4)
Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , (х₀ ; у₀)-координаты центра.В(3;-2)-центр, А(-1;-4) принадлежит окружности. Найдем R.
R²=АВ²= (3+1)²+(-2+4)² =4²+2²=20.
(x – 3)²+ (y +2)² =20.
5)
MN-диаметр , M(-2;1) , N(4;-5). Пусть О-середина MN , найдем координаты О.
х(О)= ( х(M)+х(N) )/2 у(О)= ( у(M)+у(N) )/2
х(О)= ( -2+4 )/2 у(О)= ( 1-5 )/2
х(О)= 11 у(О)= -2
О( 1 ;-2) .
R²=ОN²= (4+1)²+(-5+2)² =25+9=34.
(x – 1 )²+ (y +2)² =34.