Відповідь:
Нехай ABCDA1B1C1D1 - пряма призма (мал. 52),
ABCD - прямокутна трапеція, основа,
∠А = ∠В = 90°, АD = 5 см, АВ = 12 см, CD = 20 см, АА1 = l = BD.
Знайдемо Sпов.
Sповн. = Sбіч. + 2Sосн. = Pl + (AD + BC) • l.
Із ΔВАD (∠А = 90°)
BD = √AD2 + AB2
BD = √52 + 122 = 13 (см)
l = BD = 13 (см)
Нехай DK = АВ - висота трапеції, тоді із ΔDKC (∠К = 90°),
DC = 20, KD = 12, отже КС = 16 см (так як ΔDKC подібний до египетського)
ВС = ВК + КС = 5 + 16 = 21 (см).
Sповн. = (5 + 21 + 12 + 20) • 13 + (21 + 5) • 13 = 1092 (см2).
Відповідь: 1092 см2
Відповідь:
Нехай ABCDA1B1C1D1 - пряма призма (мал. 52),
ABCD - прямокутна трапеція, основа,
∠А = ∠В = 90°, АD = 5 см, АВ = 12 см, CD = 20 см, АА1 = l = BD.
Знайдемо Sпов.
Sповн. = Sбіч. + 2Sосн. = Pl + (AD + BC) • l.
Із ΔВАD (∠А = 90°)
BD = √AD2 + AB2
BD = √52 + 122 = 13 (см)
l = BD = 13 (см)
Нехай DK = АВ - висота трапеції, тоді із ΔDKC (∠К = 90°),
DC = 20, KD = 12, отже КС = 16 см (так як ΔDKC подібний до египетського)
ВС = ВК + КС = 5 + 16 = 21 (см).
Sповн. = (5 + 21 + 12 + 20) • 13 + (21 + 5) • 13 = 1092 (см2).
Відповідь: 1092 см2
По теореме Пифагора находим АВ. АВ^2=BC^2-AC^2=15^2-9^2=225-81=144.AB=12.
a)sinB=AC\BC=9\15=0.6(т.к. sin острого угла прямоугольного треугольника называют отношение противолежащего катета(АС) к гипотенузе(ВС))
б)sinB=0.6, А sinC=AB\BC=12\15=0.8. sin^2B+sin^2C=0.6^2+0.8^2=0.36+0.64=1
в)tgB=AC\AB=9\12=0.75 (т.к. tg острого угла прямоугольного треугольника называется отношение противолежащего катета(АС) к прилежащему(АВ)) ctgB=AB\AC=12\9=1.33 => tgB+ctgB=0.75+1.33=2.08
г)(sinB+cosB)^2=(0.6+0.8)^2=1.4^2=1.96
(sinC+cosC)^2=(0.6+0.8)^2=1.4^2=1.96